
IN DEGREE PROJECT TECHNOLOGY,
FIRST CYCLE, 15 CREDITS

, STOCKHOLM SWEDEN 2017

Planning bipedal character
locomotion in virtual worlds

ARON GRANBERG

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ENGINEERING SCIENCES

www.kth.se

Planning bipedal character
locomotion in virtual worlds

ARON GRANBERG

Bachelor in Engineering Physics
Date: May 20, 2017
Supervisor: Christopher Peters
Examiner: Martin Viklund
Swedish title: Planering av tvåfots-karaktärers förflyttning i virtuella
världar
School of Computer Science and Communication

iii

Abstract

This paper presents a locomotion system suitable for interactive use
that can plan realistic paths for small numbers of bipedal characters
in virtual worlds. Earlier approaches are extended by allowing ani-
mations to be arbitrarily blended to increase the range of motions that
the character can produce and our system also achieves greater perfor-
mance compared to the earlier approaches. The system uses a graph
of valid footprints in the world in which is searched for a path that
the character should traverse. The resulting sequence of footprints are
smoothed and refined to make them more similar to the character’s
original animations. To make the motion smoother the curvature and
other parameters of the path are estimated and those estimates are
used to interpolate between different sets of similar animation clips. As
the system is based on footprints it allows characters to navigate even
across regions which are not directly connected, for example by jump-
ing over the gaps between disconnected regions. We have implemented
the system in C# using the Unity Game Engine and we evaluate it by
making the character perform various actions such as walking, running
and jumping and study the visual result.

Accompanying material can be found at http://arongranberg.
com/research/thesis2017.

http://arongranberg.com/research/thesis2017
http://arongranberg.com/research/thesis2017

iv

Sammanfattning

Detta arbete presenterar ett system för att beräkna rörelsebanor för
virtuella ett litet antal tvåfotskaraktärer tillräckligt snabbt för att kunna
användas i interaktiva sammanhang. Tidigare tillvägagångssätt utvid-
gas för att hantera animationer som interpoleras godtyckligt och på
detta sätt kunna utöka vidden av rörelser som en karaktär kan utföra.
Dessutom så minskar vi beräkningskraften som krävs jämfört med
tidigare system. Systemet baseras på fotsteg och bygger upp en graf av
dessa i vilken en väg för karaktären söks. Den resulterande sekvensen
av fotsteg är utslätad och förfinad för att göra de mer lika de ursprung-
liga animationerna. För att göra rörelsen mjukare så uppskattar vi
kurvaturen samt andra parametrar av rörelsebanan och använder dem
för att interpolera mellan olika mängder av liknande animationsklipp.
Då systemet är baserat på fotsteg så tillåter detta karaktären att navige-
ra även mellan regioner som inte är direkt ihopkopplade, till exempel
genom att hoppa mellan gapen mellan de olika regionerna. Vi har im-
plementerat systemet i C# med spelmotorn Unity och vi utvärderar
systemet genom att betrakta karaktären när den utför diverse rörelser
som till exempel att gå, springa och hoppa.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Overview . 4

2 Related work 5

3 Implementation 7
3.1 Outline . 7
3.2 Navigation graph . 8
3.3 Smoothing . 9
3.4 Parametric blending . 10
3.5 Refinement . 13
3.6 Body trajectory . 15
3.7 Blend groups . 17

3.7.1 Turning . 17
3.7.2 Speed . 20

3.8 Inverse Kinematics . 23
3.8.1 Body offset . 24
3.8.2 Bone rotations . 25
3.8.3 Foot position . 26

3.9 Putting it all together . 27

4 Evaluation 28
4.1 Scenarios . 28
4.2 Results . 29
4.3 Discussion . 31

5 Conclusions 35

6 Bibliography 36

v

vi CONTENTS

A 39
A.1 Catmull-Rom spline . 39
A.2 Quaternions . 39

A.2.1 Logarithm . 40

Chapter 1

Introduction

1.1 Background

Animations are the key to realism in interactive media such a games. An
animation is a representation of how an object moves, rotates or changes
in other ways over time [14]. With this information an animation can
be played back, much like a movie, and a user observing it perceives
the motion. Character locomotion concerns itself with how virtual
characters, in particular bipedals like humans, move.

Modeling character locomotion

As humans we have a lot of experience in watching people move,
therefore it is still hard to generate completely procedural and still
believable animations from just a physical model [7]. What is commonly
done instead is to use humans as a source for the animation by either
letting an animator make believable animations manually or, as is
becoming more common, use motion capture [13] to record human
actors performing the actions one would want a virtual character to
perform. This is done by letting the actors wear a special suit which
allows the rotations and positions of their limbs to be precisely recorded.
In practice it is usually impossible to record all possible ways a character
might have to move. For this reason shorter animation clips are made
which are then stitched together or blended as needed in various ways.
For example if one wants a character to be able to walk in a world
one may create a few different very short (on the order of one or a few
seconds) walking animations such as walking forwards, walking in a

1

2 CHAPTER 1. INTRODUCTION

curve to the left and walking in a curve to the right. Using just these
animations one can produce a wide range of motion for the character
by playing the animation clips one after another. One can also produce
something in between by blending different animations. Blending
means that one calculates a weighted average of some kind for two or
more animations, in essence taking a little bit of one animation and a
little bit of another animation to produce a new animation that looks
like a mixture of both.

walk walk

walk le
ft

walk walk

w
alk right

Figure 1.1: Several short walking animations played in sequence to
produce more complex motion.

Just being able to play different animation clips one after the other
doesn’t get you very far however. Most virtual characters have some
kind of goal, we don’t want them to just wander around aimlessly,
we want them to move somewhere. This requires a more thought out
strategy and it is where this project comes in. We want to solve the
problem of how we should move and animate the character as it moves
to some goal position that we have determined.

The distinction between systems that have to respond quickly is
crucial. Characters that are controlled directly by a user – using for
example arrow keys on a keyboard to determine the character’s move-
ment direction – need to respond very quickly to user input to provide
a good feel. In [9] it is observed that even seemingly small delays on the
order of 150 ms can significantly affect the perceived ease of control and
enjoyment of the game or simulation. On the other hand for characters
that are not directly controlled by a user the delays are harder to notice
and thus a small delay in order to produce more realistic motion is
often a good trade-off. Non directly controlled characters also includes

CHAPTER 1. INTRODUCTION 3

characters that are indirectly controlled by a user, for example by the
user specifying where it wants the character to move, but does not
control the motion in detail.

Another important distinction is between realistic looking motion,
as this system generates, and actually physically realistic motion, as
is required for e.g robots and the like. The motion generated by this
system may not be physically realistic even if the input animation clips
are. This is primarily because our system favors control when possible.
For example if a manual sequence of footprints is used as input, our
system will produce a reasonable looking path even if the footprints are
placed such that the character cannot move physically correct between
them. We see this as necessary as for interactive media such as games it
is usually much more important to be able to follow some animation
even if the input happens to be bad than preventing the system from
producing a physically incorrect animation. In robotics on the other
hand there needs to be an emphasis on ensuring that the robot can
actually perform the motions as not doing so could lead to damaged
equipment.

Applications and other approaches

(a) Image from [15]. (b) Image from [19].

Figure 1.2

Character locomotion is widely used in interactive and non-interac-
tive media such as video games, movies and simulations. Everywhere
there is a need for an animated virtual character to navigate a world
that may be changing dynamically or taking routes that cannot be pre-
determined there is also a need for a locomotion system. For games
in particular there has always been a demand for ever more realistic
animation, but even today when we have come far, the results are not

4 CHAPTER 1. INTRODUCTION

too convincing. This is both due to performance constraints, many of
the techniques that have been developed are simply not suitable for
interactive use [10], [15], [6], as well as production cost constraints as
many techniques require very large databases of animations to work,
which is not feasible for many use cases. Other approaches are very
performant but lack guarantees that the character will be able to move
to a target correctly. This is in particular a problem for systems based
on real-time controllers [19], [12]. One example of what can happen is
that the controllers are slightly too slow to respond and that results in
the character for example walking off the edge of a platform or missing
the opening of a door and instead hitting the wall. These systems are
much better suited to characters that are directly controlled by a user.

This paper aims to make a contribution by presenting an animation
driven locomotion system suitable for interactive use.

1.2 Overview

The main approach of our system is based around footprints. We first
build a graph of valid footprints, i.e positions in the virtual world
where it is valid for a character to place its foot. The footprints in the
graph are connected with edges if there is an animation that takes a
character from one footprint to another. When a character needs to
move somewhere we search for a path in this graph and the resulting
sequence of animations and footprints is processed in various ways
to make it more realistic and aesthetically pleasing. To improve the
realism of the animation we smoothly interpolate between different
walking and running animations based on an estimated measure of
curvature of the path as well as boundary constraints on the speed of
the character. Finally an inverse kinematics stage is used to prevent the
feet from sliding around on the ground.

Chapter 2

Related work

Various strategies for character locomotion have been explored. In
"Motion Graphs" [10] (and expanded upon in [15], [6] and many other
papers) a method is described for synthesizing high quality character
locomotion from a set of animations by representing each motion as an
edge between two nodes representing the start and end poses. Poses
that are very similar can have a transition edge added between them
and then the motion synthesized by searching for paths in this motion
graph. While these methods generate very high quality results and
are very flexible, they are too slow to use for real time and resource
constrained scenarios (such as in video games). See [4] for an overview
of the relevant papers.

In "Near-optimal Character Animation with Continuous Control"
[19] a different approach is taken where value functions are learned
so that at each point in time, the character only needs to perform a
few fast evaluations of a value function to decide which animations to
blend to. This yields very performant and responsive controllers that
may be suitable for direct user control. However while some obstacle
avoidance was demonstrated, it is difficult to scale up to more complex
environments. Furthermore it does not lend itself well to interacting
with a fixed environment (for example opening a door) which may
require the character to stop at a very precisely defined position and
orientation. "Real-time Planning for Parameterized Human Motion"
[12] takes a similar approach where reinforcement learning is used, but
unfortunately has the same limitations.

In "Planning Biped Locomotion Using Motion Capture Data and
Probabilistic Roadmaps" [2] instead of trying to blend animation clips

5

6 CHAPTER 2. RELATED WORK

such that the character moves along the desired path, footholds (for the
right foot) are instead sampled in the world. A graph is constructed
between the footholds such that an edge means that there is at least one
animation clip which has the first foothold at the start of the clip and
the second foothold at the end of the clip. Using normal path planning
techniques a path can be generated that goes from the start position
to the target position with information about how the feet should be
placed. This sequence of footholds in then post processed to smooth
it out and the animation corresponding to the edges between the clips
are transformed so that they match the post processed footholds. This
produces high quality locomotion which can take into account precise
boundary conditions (such as stopping at a precise location). It is
not real time, but not that far off (calculation times are on the order
of 1 second). The method does not lend itself well to scenarios where
responsiveness is a high priority as planning takes place several seconds
before the character reaches a particular point.

Chapter 3

Implementation

3.1 Outline

The system is partially based on the work by [2]. We extend their
approach to produce more realistic animation by allowing animations
to be arbitrarily blended instead of just stitching together sequences
of animation clips that start and stop at a few fixed poses, as well as
improving the performance significantly by taking advantage of how
different motion deviations happen at different frequencies.

Allowing animations to be blended arbitrarily has a large positive
impact on the perceived realism of the resulting animation in many
situations. For example it allows the character to turn with any angular
speed in the range that the input animation clips encompass instead of
at only a few fixed angular speeds.

The system is well described as a pipeline with several stages (see
image below). We will describe the stages in more detail in the later
sections, but first we will give a high level overview of how it works.

First we plan a path in a navigation map much like in [2] which
produces a sequence of footprints for the right foot together with the an-
imations that moves the character from one footprint to the next. Then
we smooth the footprints, primarily to make it shorter. The smoothed
footprints no longer correspond that well to the animation clips how-
ever, so the next stage is to refine the footprints so that they locally
match their corresponding animation clips better. We then approximate
blending parameters for the animations that can be blended. These
blending parameters can for example be the turning speed. We estimate
the parameters using various measures, for example the curvature of

7

8 CHAPTER 3. IMPLEMENTATION

the curve that traces the center of gravity of the character. We then
replace each animation clip that can be blended in a group by the corre-
sponding blend group (for example a clip in which the character walks
in a circle to the left is replaced by an animation group that blends
between all the different walking animations). After this the footprints
again no longer match the animation clips that well, so we run a second
iterations of the refinement stage. Finally we apply inverse kinematics
(IK) [18] to minimize foot sliding.

Plan Path
Section 3.2

Smooth Footprints
Section 3.3

Refine Footprints
Section 3.5

Blend Groups
Section 3.7

Refine Footprints
Section 3.5

Inverse Kinematics
Section 3.8

Play Animation
Section 3.9

The different stages will be described in detail below.

3.2 Navigation graph

Figure 3.1: Example of a navigation graph. The black connections
represent animation clips moving between the footprints in red. The
traversable surface which the navigation graph is based on is visible in
dark red.

If we have a character that needs to move in some way from one
part of the world to another we need to plan a path for it. We construct a
navigation graph by sampling points/rotation pairs randomly all over
the traversable surface of the world and then connect nearby points
by an edge if there is an animation clip in the database which matches
the edge reasonably well when the points are treated as the position

CHAPTER 3. IMPLEMENTATION 9

and rotation of the right foot at the start and end of the animation. This
stage is very similar to [2] so for further details we will refer to that
paper.

After a path has been planned in the navigation graph we continue
by smoothing out the kinks in it in the next section.

3.3 Smoothing

Figure 3.2: Smoothing a sequence of footprints. Note that the footprints
are prevented from entering the obstacle.

The sequence of footprints produced by the path planning in the
navigation graph tends not to be very smooth. We smooth the footprints
using a simple smoothing kernel that we apply a small number of times
(in our tests we used 4 iterations). If we label the footprints in the
sequence as {pi ∈ R3} and the rotations of the footprints as {qi ∈ S3}
(represented by quaternions [5]. See appendix A.2) we can smooth
them using a binomial smoothing kernel as

p′i =
1

16
·
(
pi−2,pi−1,pi,pi+1,pi+2

)
· (1, 4, 6, 4, 1)T

q′i = qi · exp

(
1

16
· (ωi−2,ωi−1,ωi,ωi+1,ωi+2) · (−1,−5, 0, 5, 1)T

)
Where ωi = log

(
(qi)

−1qi+1

)
or in other words the angular difference

between the rotation of footprint i and i+ 1. Both smoothing kernels
have the effect of making the positions and rotations of the footprints
more similar to their adjacent footprints. After each smoothing iteration
we snap the position of each footprint to the closest point on the surface
of the world that a footprint can be placed on to make sure the path
is still valid. This can be done in various ways, which way is not
particularly important for our use case. We represent the traversable

10 CHAPTER 3. IMPLEMENTATION

surface of the world using a set of polygons (see figure 3.1) and simply
find the closest point on any of those polygons.

3.4 Parametric blending

Here we take a detour to discuss how animations are blended which
is an often overlooked detail but which produces large artifacts if not
handled properly. We will need this information for the next stage in
the pipeline.

To provide smooth transitions we need some method of combining
a set of animations with their corresponding blend weights. We define
the set of all animations as {ai} and their corresponding blend weights
as {wi} such that

∑
wi = 1. If we for example have two animations a0

and a1 which were walk forward and walk to the right in a circle we
could make our character walk in a wider circle by blending the two
animations with for example w0 = 0.5 and w1 = 0.5. Each animation
consists of, for each frame, the local offset ∆r ∈ R3 and an angular
offset ∆q ∈ S3 that is used to move the character as well as the rotations
of all the bones in the character. Thus if the character is positioned at
position r with rotation q and we are playing an animation a at time t
then we can calculate where the character will be at the next frame as

r′ = r + q ·∆r(a, t) · q−1

q′ = q ·∆q(a, t)

Or in other words that the character moves in the direction of ∆r for
that frame, but note that ∆r is relative to the character so it needs to be
converted from local space to global space by rotating the vector with
the character’s current rotation. The rotation is done using a quaternion-
vector multiplication, for a vector v and rotation q the operation q ·v ·q−1
corresponds to v being rotated using the rotation. The character is also
simply rotated by ∆q.

One may think that to blend multiple animations we could take a
weighted average of ∆p according to the blend weights

r′ = r + q ·

(∑
i

wi∆r(ai, ti)

)
· q−1

This does not produce satisfactory results however as this does not
account for terms that come from how the blending weights change
over time.

CHAPTER 3. IMPLEMENTATION 11

Figure 3.3: Blending from
a walk to the left (blue) to
a walk to the right (green)
with different blend points
(red).

The character’s position is deter-
mined by its center of gravity, however
it does not always make sense that the
center of gravity should stay fixed when
blending between animations. If we take
the example in figure 3.3 in which we
blend quickly from running in a circle to
the left to running in a circle to the right.
The character tilts significantly inwards
into the circle and thus the center of grav-
ity is also offset inwards. When blending
to the other animation we would expect
the feet of the character to stay approx-
imately where they are, but unless we
add extra terms for that it is the center
of gravity that will stay fixed and the
feet will slide a great distance across the
ground which will not look particularly
realistic. We define the blend point as the
point that stays fixed when blending be-
tween a set of animations.

We observe that when a single foot is
on the ground, it is the position of that
foot that we want to keep fixed. To ex-
tend this to arbitrary situations we intro-
duce the most stable point ps between the
two feet. We draw a virtual line from the
left foot to the right foot of the character
and study how points on that line move
as the time passes. We define the most stable point as the point on
that line which moves the least over time. If only one foot is stationary,
then this will be the position of that foot. Assume the positions and
velocities of the feet are pL,vL and pR,vR respectively for the left and
right feet, we then want to find the point

ps = pRα + pL(1− α)

that lies on the line from pL to pR which minimizes the velocity at that
point.

argmin
α
|vRα + vL(1− α)|

12 CHAPTER 3. IMPLEMENTATION

Here α is an interpolation parameter which defines ps.
This is equivalent to

argmin
α
|vRα + vL(1− α)|2

which we can expand and simplify to

argmin
α

(
|vR − vL|2α2 + 2

(
vRvL − |vL|2

)
α + |vL|2

)
We differentiate with respect to α and set the derivative to 0 to find the
minimum

d

dα

[
|vR − vL|2α2 + 2

(
vRvL − |vL|2

)
α + |vL|2

]
= 0

which leads to

α =
|vL|2 − vRvL
|vR − vL|2

To make sure this is actually a point between the left and right foot we
clamp α to be between 0 and 1.

α = min

(
1,max

(
0,
|vL|2 − vRvL
|vR − vL|2

))
This means that if we in an instant change the interpolation parame-

ter from α to α′ we would have to make the following adjustment to
the character’s position to keep the blend point ps fixed

r′ = r + (ps − p′s) = p + (pLα + pR(1− α))− (pLα
′ + pR(1− α′))⇔

r′ = r + (pR − pL)(α′ − α)

To calculate the final movement in a way that avoids cyclical depen-
dencies we divide the movement into two phases. As usual x for some
variable x refers to the value for the previous frame while x′ refers to
the new value calculated during this frame.

In the first phase we calculate the movement without any adjust-
ment based on the blend point and move the character using that
information. We sample the new positions of the feet (p′L,p

′
R) and

calculate the velocities of them.
Note that for the rotational part we linearly interpolate quaternions

which does not in general make sense mathematically. However if
the quaternions are very close to each other – which in our case they

CHAPTER 3. IMPLEMENTATION 13

are since the character will not rotate that much in a single frame and
thus all ∆q will be close to the identity quaternion – then linearly
interpolating between quaternions is approximately correct so we can
actually do that.

r′ ← r + q ·∆r(a, t) · q−1

q′ ← q ·

(∑
i

wi∆q(ai, ti)

)

v′L ←
p′L − pL

∆t

v′R ←
p′R − pR

∆t

In the second phase we calculate the new α and finally reposition
the character based on the new blending point.

α′ ← min

(
1,max

(
0,

v′2L − v′Rv
′
L

|v′R − v′L|2

))
r′ ← r′ + (p′R − p′L)(α′ − α)

For any set of animations with associated weights, the motion of the
character can now be calculated. In the next section we will use this to
improve the quality of the path.

3.5 Refinement

At this stage we have a smoothed sequence of footprints with accompa-
nying animation clips and we are in this stage interested in making the
desired footprints more locally similar to the original animation clips.
As a rule animation clips to not line up perfectly at the time of transition
unless a large amount of care is taken by the animator. Making sure
the animation clips line up perfectly also limits the animation clips that
can be used without intermediate transition animations. For example
when a character is running in a circle it is natural for the character
to lean slightly inwards into the circle, however that causes problems
if the animation should line up perfectly with the running forwards
animation in which the character does not lean in any direction. To
solve this we transition between the animations over a short amount of
time (we used 0.3 seconds) by interpolating the blend weights.

14 CHAPTER 3. IMPLEMENTATION

Our method is similar to the one used by [2] but we have generalized
it to handle blended animations as well as tweaked how the rotation
was handled to, in our view, be more realistic. The method in [2] could
end up not correcting for unnatural rotations in the original footprints
which could lead to a final animation of low quality.

We let the animation play out without any adjustments whatsoever
(as described in section 3.4) and track the positions of the footprints
that the character leaves. These will be different from the footprints
that we want the character to use, often significantly so. We denote the
footprints that the character left when playing the original animation
clips as pOi and qOi for the positions and rotations respectively. We
similarly denote the desired footprints as pDi and qDi . For each footprint
we look at its two adjacent footprints (this includes all footprints, so
for a footprint by the right foot the adjacent footprints would typically
have been made by the left foot) and create an affine transformation
that maps from the positions of the original footprints to the desired
footprints such that pOi−1 maps to pDi−1 and pOi+1 maps to pDi+1. We can
view the transformation as first applying an offset pDi−1 − pOi−1 which
moves the previous original footprint to the position of the previous
desired footprint. Then we apply a rotation so that the direction from
the previous footprint to the original next footprint is parallel with
the direction from the previous footprint to the next desired footprint.
Finally we apply a uniform scale so that the next original footprint ends
up at the same position as the next desired footprint. See figure [todo].

We then transform the current footprint, pOi and qOi , with the trans-
formation which produces a new desired position and rotation for the
footprint that makes it very similar to the original animation clip. We
apply this transformation in several iterations to all footprints (except
for the first and last footprints) and make sure to always snap the posi-
tions of the footprints to the closest points on the traversable surface of
the world. This process converges relatively slowly, but we have found
that on the order of 10 iterations is sufficient for our use case.

The original sequence of footprints have now been both smoothed,
which took away some detail, and then refined to add back the detail
that we really want, i.e that the footprints should be similar to the
animations that the character uses at that time. However we only have
the footprints, not a body trajectory that determines where the character
should be positioned and rotated at each point in time, so in the next
section we will describe how to calculate that.

CHAPTER 3. IMPLEMENTATION 15

a b c

e f g

RD

RO

pO
i+1

mO
i

MO

D(t)

pO
i

pD
i

mD
i

MD

RO(t)

MO(t)

d

Figure 3.4

3.6 Body trajectory

We now have a sequence of footprints as well as blending parameters
for the whole animation. For the final IK stage we will adjust the path
of the character to minimize foot sliding, however for it to be effective
we need to have a good initial estimate of how the character is going to
move. We extend the method introduced by [2] to handle arbitrarily
blended animation sequences.

To reiterate, for the final result we need we need to know, for each
frame, where the character (i.e its center of gravity) will be as well
as its rotation. As it stands right now we have the desired footprints
that we want the character to leave (fig 3.4.e) but not the exact body
trajectory. However we do also have the blending weights for the
animation clips for each frame, so we can let the animation play out
without any adjustments whatsoever and record the center of gravity
of the character as well as the footprints the character leaves (fig 3.4.a).
It turns out that we can transfer the body trajectory from a trajectory
following the original footprints to a trajectory following the desired
footprints (fig 3.4.g) using the approach detailed below.

Let us denote the original body trajectory of the character RO(t) and

16 CHAPTER 3. IMPLEMENTATION

the corresponding rotation of the character QO(t) (fig 3.4.a). Further let
tOi be the times when the character left each footprint when letting the
animation play out. In [2] it is observed that a reasonably good estimate
for the center of gravity is right between two adjacent footprints of
different feet. Since we know both the original footprints and the
desired footprints we can calculate the midpoints for both cases. Let
us denote these midpoints as mO

i and mD
i for the original and desired

midpoints respectively (fig 3.4.b,e) such that 0 ≤ i ≤ n. For each
midpoint we also store the time (mO

t,i and mD
t,i) in the animation that

it corresponds to as well as a rotation (mO
q,i and mD

q,i) for it. We define
these values as the mean of the values for the two footprints they were
created from. For ease of notation we will use j as a placeholder for
both O and D.

mj
i =

pji + pji+1

2

mj
t,i =

tji + tji+1

2

mj
q,i = slerp

(
qji , q

j
i+1,

1

2

)
Here slerp(q1, q2, x) is the spherical linear interpolation defined in the
usual way [16].

To extend the sequences mj to cover all frames in the animation we
fit a sequence of centripetal Catmull-Rom splines (see appendix A.1)
through the points (fig 3.4.b,e). We denote the Catmull-Rom splines as
MO and MD.

M j(t) = pc,r

(
mj

k−1,m
j
k,m

j
k+1,m

j
k+2,

t−mj
t,k

mj
t,k+1 −m

j
t,k

)
where

k =

0 if t < mj

t 0,

n if t > mj
t n,

max
{
i : t ≥ mj

t i

}
otherwise.

To ensure the spline is defined at the first as well as last points we extend
m with mj

−1 = mj
0 +

(
mj

0 −mj
1

)
and mj

n+1 = mj
n +

(
mj

n −mj
n−1
)
.

For the rotation we use a simpler interpolation

M j
q (t) = slerp

(
mj
q,k,m

j
q,k+1,

t−mj
t,k

mj
t,k+1 −m

j
t,k

)
.

CHAPTER 3. IMPLEMENTATION 17

Let us now define the displacement of the body trajectory from the
Catmull-Rom spline (fig 3.4.c,d)

Dp(t) =
(
MO

q (t)
)−1 · (RO(t)−MO(t)

)
·MO

q (t)

Dq(t) =
(
MO

q (t)
)−1 ·QO(t)

It can be seen as defining a new coordinate system at position MO(t)

with rotation MO
q (t) and extracting the coordinates of the point RO(t)

in that coordinate system.
Finally we determine the desired body trajectory by treating Dp(t)

as the local coordinates in a coordinate system at MD(t) with rotation
MD

q (t) (fig 3.4.f,g)

RD(t) = MD
q (t)Dp(t)

(
MD

q

)−1
+ MD(t)

QD(t) = MD
q (t)Dq(t).

This section has described how we can calculate a reasonable body
trajectory for the character. We can improve this trajectory however
and this is described in the next section.

3.7 Blend groups

So far we have had a sequence of animation clips that we have transi-
tioned between over short durations of time. This may however not
lead to the best animation quality as the animation clips in the database
may not cover all behavior that we may want. We will describe two
ways to calculate better blend parameters for the animations, one for the
turnings speed of the character and one for the speed of the character.

3.7.1 Turning

A common case is that the character is moving in an arc. In the an-
imation clip database one would typically have a moving forwards
animation as well as a few animations of the character moving forwards
and turning by varying amounts (so that if the clips would loop, the
character would walk in a circle). However since we only have anima-
tion clips for a few discrete turning radii, any movement approximating
an arc would have to be composed out of animation clips which do not
precisely match that arc. For example a wider arc could be achieved by

18 CHAPTER 3. IMPLEMENTATION

playing the clips walk-forward, walk-right, walk-forward, walk-right
etc. The results of this are not particularly pleasing however as in real
life no person would do that, instead one would walk in a smooth arc
with the correct turning radius. This is illustrated in figure 3.5.

(a) Repeating sequence of walk-
forward, walk-forward, walk-right.

(b) Blend of 2
3 walk-forward and 1

3

walk-right.

Figure 3.5

Other cases where this can be a problem is jumping over a crevice,
where the animation clip database may have different animations for
different lengths of the jump. If the animation database included straf-
ing, the strafing direction would be a good candidate as well.

To solve this we group animations into blending groups. A blending
group consists of a set of animations that can freely be interpolated
between using one or more parameters that can be calculated from
an existing path. In our tests we have for example a blending group
consisting of 5 animations: walk-left, walk-left-wide, walk-forward,
walk-right-wide and walk-right. They are parametrized by curvature
τ = 1

r
where r is the turning radius. In our sequence of animation

clips we replace all animation clips that are included in the blending
group by the blending group itself. What remains now is to supply the
blending group with a blending parameter (e.g τ) for the path.

We do this by approximating τ at several points along the path and
then fitting a b-spline to the data. For each frame in the animation we
pick one point on the body trajectory a fraction of a second in the past
and one point a fraction of a second into the future. Then we calculate
the radius Rc of the circle that passes through those 3 points which is
well known how to do.

τ(t) =
1

r
=

1

Rc(R(t−∆t),R(t),R(t+ ∆t))

CHAPTER 3. IMPLEMENTATION 19

0 5 10 15
Time [s]

2

1

0

1

2
 [r

ad
/m

]

walk-left

walk-left-wide

walk-forward

walk-right-wide

walk-right

Figure 3.6: Approximation of τ for use as a blending parameter in a
simple test case. The original blend parameter (when transitioning
between individual clips) is in blue. The approximated values of τ are
in black and the smoothed b-spline for τ is in red.

Figure 3.7: Body trajectory before and after using blend weights deter-
mined by τ . This corresponds approximately to the time range [10, 16]
in figure 3.6 with the left side corresponding to the blue blend weights
in that figure and the right side corresponding to the red blend weights.

20 CHAPTER 3. IMPLEMENTATION

We fit a b-spline to τ(t) and use that as the blending parameter. The
b-spline is used as a low-pass filter to smooth out any high frequencies
which could cause the character to unnaturally quickly transition from
one animation clip to another. That it is a b-spline is not particularly
important, any other interpolation method which acts as a low-pass
filter (e.g a moving average filter) would work as well. The amount of
smoothing in the filter is set by a user defined constant.

In figure 3.6 this is done for a simple test case and in figure 3.7 the
differences in body trajectory can be seen. We can see that the body
trajectory when blending groups are used is significantly smoother.
One can note that the character sways slightly to the left and to the
right when walking which is visible as small oscillations in the black
curve in figure 3.6, these oscillations are smoothed out by the b-spline.

To get the final blend weights, let τi be the curvature for animation
clip i in the group. Let a denote the animation clip with the greatest τi
that is still smaller than the current value of τ(t). Similarly let b denote
the animation clip with the smallest τi that is still greater than τ(t).
We then let the animation weights for the animations in the group be
determined by linear interpolation

wa = wgroup ·
τ(t)− τa
τb − τa

,

wb = wgroup ·
(

1− τ(t)− τa
τb − τa

)
,

wi = 0 : i 6= a ∧ i 6= b.

If it is not possible to find either a or b because τ(t) is outside the range
allowed by the animations. We let the animation with the closest τi get
the full weight and the rest of the animations get a weight of 0. wgroup

is the weight for the whole group. The group can now be blended
together with the rest of the animations as if it was a normal animation
and not a set of them.

3.7.2 Speed

Another important case is the speed of the character or more specifically
if it is walking or running. We will differentiate here between anima-
tions that are purely walk or run animations, and those that are not,
for example a jump animation, open-door animation or any other kind.
The key differentiator is that we will, like in the previous section, allow

CHAPTER 3. IMPLEMENTATION 21

0 5 10 15 20
Footprint number [1]

0.0

0.5

1.0

s [
1]

s1

s2

d1 d2

Ju
m

p

Ju
m

p

St
op

walk

run

Figure 3.8: Values of s in the Jumps scenario (see section 4) for σ =

1, 2, 3, 4.

walk and run animations to be freely blended between each other, but
we will also allow walk animation to blend freely with run animations.
On the other hand it does not make much sense to blend say a jump ani-
mation with a run animation as the poses in them may be quite distinct.
For ease of writing, we will let special animations denote the animations
that are not purely walking or running. The special animations may
start and end with the character either walking or running and as is
often the case they will either be preceded or followed by a walking or
running animation (which we in the previous section combined to a
single blend group). To make the animation as smooth and natural as
possible it is desirable that the character has the correct speed (i.e the
correct blend between walking and running) when starting to transi-
tion to the special animations (or starts with the correct speed when
transitioning away from the special animations).

We will let the blend between walking and running to be parametrized
by a blending parameter s. If it is 0 the character is walking and if it is 1
the character is running. In some situations it may make sense to have
more than two speeds, for example walking, jogging and sprinting. In
this case jogging would end up somewhere between 0 and 1.

We can divide the whole animation up into sections at the transition
points between special animations and walking/running animations.
At the transition points we know the value that needs to have s based
on if the animation that is transitioned from or to is in a walking or
running state at that time (this information can be manually annotated
or automatically inferred based on the velocity of the character in the
animation). We also specify the desired values of s at the start and end
of the animation. The problem now consists of filling in the values of s

22 CHAPTER 3. IMPLEMENTATION

in between these fixed points. See figure 3.8 for an illustration.
We make s vary linearly such that it reaches the desired speeds at

the right times but slows down to a walk if it can. If we look at a single
section between two known values of s. Let the distance in normalized
time (todo: define) to the earlier known value be d1 and the distance to
the later known value be d2. Further let the known values themselves
be s1 and s2. We then define the in-between values as

s(d1, d2, s1, s2) =

{
s1d2+s2d1
d1+d2

if d1 + d2 < 2σ(s1 + s2),

max
(
0, s1 · σ−d1σ

, s2 · σ−d2σ

)
otherwise

where σ is a user defined parameter which controls how long it takes
for the character to speed up or slow down. We used σ = 2 in our tests.
When there is not enough time to slow down completely between the
two known values (the first case) then we linearly interpolate between
s1 and s2 over all available time. This is visible between the two jumps
and after the last jump in figure 3.8. We do this because from empiric
testing it feels unnatural if the character seems to slow down to a walk,
only to start running again before it has finished slowing down.

A more complicated interpolation scheme was also tested that en-
sured that the derivative of swas continuous. However after evaluating
it, it turned out that if the derivative of s is continuos or not is not eas-
ily perceived and the linear interpolation looked at least as good or
possibly better.

When we have s we use that to blend between the walking and
running animation groups very similarly to what we did earlier for the
turning speed. Let wwalk and wrun denote the weights for the walking
and running animation groups. We let their weights be determined by

wrun = wgroup · s, wwalk = wgroup · (1− s).

As previously wgroup is the weight for the whole group. In this case
itself consisting of two sub-groups.

After we have calculated these new blending parameters, we run
the refinement (see section 3.5) stage again to make the footprints more
similar to the new animation. We will continue in the next section by de-
scribing how to ensure the feet do not slide around on the ground as all
our modifications to how the character moves may have caused it to de-
viate significantly from its natural motion (i.e without any adjustments
whatsoever, just playing the animation).

CHAPTER 3. IMPLEMENTATION 23

3.8 Inverse Kinematics

At this stage we have a reasonable path for the character to move
along, however if we would make the character follow this path while
playing the original animations then the character’s feet would slide
significantly. To solve this we post process the path using inverse
kinematics (IK) [18] to position the character’s feet where they should
be. The IK solver may offset bone rotations as well as the position and
orientation of the character. Once we have these offsets we use the
method presented in [11] to fit a b-spline to them to make sure that the
result is smooth.

In [2] a conjugate gradient descent method was used to optimize
both the bone rotations as well as the position and rotation of the
character at the same time. The major drawback of this approach is
however that it is slow. In fact the time it took to run the conjugate
gradient descent was usually greater than the combined time it took to
run all other stages of the algorithm, something which we have been
able to replicate.

To improve the performance we argue that low frequency changes
should primarily happen by changing the character’s position and ro-
tation while high frequency changes should happen by modifying the
characters bone rotations. Here low frequencies are frequencies lower
or around the same as the frequency of the character’s footsteps. A
bipedal character always strives for balance, so if the bones were for a
longer duration biased in a certain direction (say for example that the
legs were biased to on average point more to the right of the character)
then a real character would in most cases try to move them back to
a more neutral position, possibly moving or rotating the entire body
while doing so. The result would be that any low frequency changes
would be transferred to the body trajectory instead. This is of course
only a qualitative argument and it doesn’t hold in all cases. It does
however empirically work well as a first approximation and allows us
to significantly speed up the algorithm so the trade-off seems reason-
able. Furthermore by allowing animations to be arbitrarily blended
(see section 3.7) the adjustments made by the IK stage (either using
the algorithm that will be described here or the one used in [2]) have
empirically been made much smaller as the animation itself is much
smoother. Therefore the difference between the results of the technique
in [2] and the one described here is not large while the differences in

24 CHAPTER 3. IMPLEMENTATION

performance are between one and two orders of magnitude depending
on the test case.

The base approach is the same as in [2]. We use hierarchical b-splines
as introduced by [11] to build up the offset from the original values
over several iterations. The reason for using hierarchical b-splines
instead of a single b-spline is to both make it possible for the character
to ’anticipate’ having to e.g place a foot at a particular position but
still allow make it possible to represent enough detail to satisfy the IK
goals well. The main difference is that we separate the adjustment of
the characters position and rotation with the adjustment of the bone
rotations. First we will adjust the position and rotation of the character
once, then we will proceed to adjust the bone rotations over a few
iterations. This allows us to use fast methods in both cases instead
of having to fall back on more general but slower methods such as
conjugate gradient descent.

3.8.1 Body offset

For each frame in the animation either one foot or both feet will be
touching the ground. If at least one of them are we want to adjust the
character’s position and rotation so that the foot is more accurately
placed exactly where we want it to be. We do this by modeling the
character with a simple differential equation.

Let pik be the ik target position (i.e where we want to place the
foot, for details see section 3.8.3). Let p = RD(t) be the position of the
character and q = QD(t) be the rotation. Further let ploc be the local
position of the foot relative to the character. This means that the global
position of the foot is

pglob = p + q · ploc · q−1.

Ideally then we would like that

pglob = pik

or in other words that the foot’s global position lines up perfectly with
the ik target position.

Using this we define an error

F = pik − pglob.

CHAPTER 3. IMPLEMENTATION 25

and
T = F ×

(
q · ploc · q−1

)
Then we use an iterative process to bring the character closer to the
desired position. In each step we modify the position and rotation of
the character as

p← p + αF

q ← exp(βT) · q

Where α, β are user defined constants. The fraction β
α

determines how
much the character will rotate towards the target as opposed to trans-
lating to reach it. For each iteration it moves and rotates the character
closer to the target ik position. With α and β set to suitably high values
it converges quickly (on the order of 10 iterations). We used α = 1

2

and β = 1. Should it happen that the character has both feet on the
ground we execute the process twice, once for each foot, and then take
the average of them.

The physical intuition for the iterative process is that F can be seen
as a force, dragging the character closer to the desired point, and T can
be seen as the torque applied to the character when the force F pulls
the character at the position of the foot. It does not behave exactly like
a physical system would do, but it is close enough that it can help with
the understanding.

Let the final position and rotation after the last iteration be pf and qf .
We record the offset of the final position and rotation from the original
data as

po = pf − p

qo = q−1 · qf

Once we have done this for each frame in the animation we have po

and qo for a subset of all frames. We fit b-splines to this data using the
method described in [11] and we let the interpolated offsets be Dbody

p (t)

for the position and D
body
q (t) for the rotation.

3.8.2 Bone rotations

After the body position and rotation has been fixed for each frame we
will adjust the bone rotations of the character. For each frame we check
if any of the feet are touching the ground. If a foot is touching the
ground we need to move it and rotate it such that it is placed on the
desired footprint. A leg has 7 degrees of freedom: 3 for the rotation of

26 CHAPTER 3. IMPLEMENTATION

Figure 3.9: Foot IK point

the upper leg, 1 for the rotation of the lower leg as the knee is a hinge
joint, and 3 for the rotation of the foot. The constraints that we want to
apply, namely moving and rotating the foot, only constrains 6 of those
degrees: 3 for the foot position and 3 for the foot rotation. Therefore
there is one free degree of freedom which in this case turns out to be the
rotation of the leg around the line from the hip to the foot. Most of the
possible rotations are unrealistic for a human, but any IK algorithm will
still have to find some way of determining this last degree of freedom.
In our case it is reasonable that we want the rotations of all bones to
be as similar to the original rotations of the bones as possible. We use
the same hierarchical approach as described in [11] with the important
difference that we only have to optimize for a single variable since the
position and rotation of the character is already fixed. This brings down
the number of variables from ≥ 7 to 1 which improves the performance
significantly. Let the final rotation of bone i after this stage be given by
Qb
i(t).

3.8.3 Foot position

To provide the greatest amount of realism, we cannot simply use IK
to move for example the center of each foot to where it should be. If
we study how a person walks (figure 3.9), we see that initially the heel
is placed down, then the whole foot and finally the heel is raised and
only the toes are still in contact with the ground. Using only the feet’s
bone positions, which are usually located at the ankle or heel, we risk
constraining the feet and for example preventing the heel from leaving
the ground for a short duration of time. Alternatively we would have
to shorten the duration at which we apply IK to the feet, which could
increase the amount of foot sliding. Therefore we propose that the
optimal position used for IK is determined by the closest point on the
foot’s surface to the ground. More practically we use whichever one
of the heel position and the toe position that is closest to the ground.

CHAPTER 3. IMPLEMENTATION 27

In figure 3.9 we indicate the ik point using a red dot. Note that in the
center of the image the foot is horizontal, so the ik point could just as
well have been close to the toes. A similar system is further discussed
in [8].

3.9 Putting it all together

We now have everything we need to be able to animate the character.
We know how the body should be positioned and oriented at each point
in time and we know the bone rotations. To summarize, when we let
the character play out its animation, we let for each point in time t

• the position of the character be Dbody
p (t) + RD(t),

• the rotation of the character be Dbody
q (t) ·QD(t),

• and the rotation for each bone i in the character be given by Qb
i(t).

As the description of the implementation is now finished, we will
continue by describing how the system was evaluated and how it
performs in various scenarios.

Chapter 4

Evaluation

We have implemented the system in C# using the Unity Game Engine 1.
For the purpose of evaluation we have constructed a few different test
scenarios. We describe these below and list the performance in table
4.1. The accompanying video shows the same test cases. The system
has been evaluated on a computer with an Intel i7-4790K processor at
4 GHz. Since the graph searching stage was not an area of focus for this
paper, not much work has been put in to optimize it and therefore we
do not include it in the performance results.

4.1 Scenarios

Jumps

In the “Jumps” scenario (figure 4.1) the character starts walking for-
wards, then reaches a bend, starts running and then jumps over a gap
in the platforms. The character the rounds a sharp bend, jumps a sec-
ond time and finally slows down and comes to a full stop. The jump
animation that was used starts and ends with the character running, so
our system has ensured that the character smoothly starts to run before
it reaches the point where it transitions to the jumping animation.

This scenario has a sharp bend between the two jumps which is
deliberate. In previous tests other experimental locomotion systems
were tested with this scenario and that sharp bend turned out to be par-
ticularly difficult to handle well, in particular for real-time controllers
(as discussed in the introduction).

1Unity 5.5.2, see http://unity3d.com

28

http://unity3d.com

CHAPTER 4. EVALUATION 29

Figure 4.1: The Jumps scenario.

Figure 4.2: The Turns scenario.

Turns

In the “Turns” scenario (figure 4.2) the character walks along a sequence
of bends and ends with walking along a curved platform. The character
has been prevented from running in this scenario.

This test is primarily used to evaluate how natural it looks when
the character transitions between walking in different directions.

We show how the motion looks and how the system performs when
the character is tasked with moving in the above scenarios in the next
section.

4.2 Results

In the Jumps scenario it can be noted that when we disable the speed
adjustment of the character (see section 3.7.2) by preventing the walking

30 CHAPTER 4. EVALUATION

0 5 10 15 20
Time [s]

2

1

0

1

2

 [r
ad

/m
]

Ju
m

p

Ju
m

p

St
op

walk-left

walk-left-wide

walk-forward

walk-right-wide

walk-right

Figure 4.3: Curvature for the Jumps scenario. The original blend pa-
rameter (when transitioning between individual clips) is in blue. The
estimated curvature is in black and the final blend parameter after the
low-pass filter has been applied is in red.

0 5 10 15 20
Time [s]

2

1

0

1

2

 [r
ad

/m
]

St
op

walk-left

walk-left-wide

walk-forward

walk-right-wide

walk-right

Figure 4.4: Curvature for the Turns scenario using the same colors as in
figure 4.3.

CHAPTER 4. EVALUATION 31

0 5 10 15 20
Footprint number [1]

0.0

0.5

1.0

s [
1]

Ju
m

p

Ju
m

p

St
op

walk

run

Figure 4.5: Speed blend weights in the Jumps scenario.

and running animations to be freely blended between, it looks distinctly
unnatural as the character has to quickly transition from walking to
running right before the jump starts as well as quickly transition to
walking after the last jump ends.

In the turns scenario we note that if we disable the interpolation
between different types of walking animations, the system will use the
walk-forward animation for most turns in this scenario since the turns
are not that sharp. The result is that the character does not lean slightly
inwards when turning which does impact realism negatively. It is not a
large effect, but it is noticeable. This is clearly visible in figure 4.4.

If we allowed the character to run in the turns scenario it turned out
that the system simplified the path so that the character didn’t follow
the curved shape of the platforms, but instead took slightly longer steps
and ran across the gaps between the platforms. However since the
simplified path was significantly shorter than the initial curved path, it
turns out that this produced a slightly uncanny animation. This effect
is further discussed in section 4.3.

As images rarely do animations justice, the reader can take a look
at the accompanying video to see a better visualization of the results.
There are several interesting conclusions that we can draw from the
results and we will discuss them in the next section.

4.3 Discussion

When implementing our system we have observed a few behaviors
and effects that are of particular note. There are also several potential
improvements that can be made to the system to make it both higher
quality as well as improving the performance of it, both of which are

32 CHAPTER 4. EVALUATION

Jumps Turns
Number of footprints 51 43
Numer of frames 1384 1314
Smoothing < 1 ms < 1 ms

Refinement 11 ms 7 ms

Trace Body Trajectory 30 ms 52 ms

Blend Groups 3 ms 3 ms

Inverse Kinematics 159 ms 185 ms

Total time 204 ms 248 ms

Average time/frame 0.15 ms 0.19 ms

Table 4.1: Performance results for the different scenarios.

important for practical applications.

Footprint count

As our system uses blend groups to allow walking animations and
running animations to be freely blended between, it often happens
that the character runs instead of walks when traversing a sequence
of footprints originally constructed from walking animations. As ob-
served in [17] there is a highly linear relationship between the speed of
a human and the distance between each footprint (the stride length).
However when we adjust the character’s speed by making it run we do
not alter the number of footprints and thus the distance between them
will remain roughly the same (unless the refinement stage in section
3.5 can manage to move them further apart). This can also happen if
the smoothing stage shortens the path a significant amount. The result
is a character that is running but with the same distance between the
footprints as a walking character. We have observed that this gives
an uncanny feel to the animation. In future work it may be possible
to extend the system to adaptively remove or add footprints when
necessary to resolve these cases.

Navigation graph

For the system to work well the navigation graph (see section 3.2) has
to be relatively dense. This uses a lot of memory and is quite slow to

CHAPTER 4. EVALUATION 33

generate which makes it infeasible for large worlds and worlds which
change frequently. Even though it is very dense, a significant amount
of information is simply thrown away when smoothing and refining
the path. This raises the question of if it might be possible to generate
the initial sequence of footprints in some other way as very little of the
detail in the navigation graph is actually used. We think a promising
approach would be to first plan a path (a sequence of points in this
case) using a more high level navmesh [3] and then convert this path to
a sequence of footprints and animations by finding the animations that
best matches the path locally. For more difficult regions such as very
tight spaces or jumping over a gap, some pre-processing could be done
to add these to the navmesh. This would likely have to be combined
with some adaptive approach as described above. It is however unclear
if this approach would be able to handle as complex environments.

Dynamic environments

The main limitation for using this system in dynamically changing en-
vironments is currently the navigation graph (see section 3.2) as it takes
a relatively long time to calculate it (on the order of seconds or tens of
seconds, which is a long time in the context of a world that is constantly
being changed). So as above we note that an important avenue for
future work would be an alternative way of either constructing the
navigation graph or finding the initial path in some way that does not
require a navigation graph.

Speed limitations

In section 3.7.2 we adjust the speed of the character. In our system
we only consider some types of boundary values that determine the
speed of the character. However there are more of them. For exam-
ple a running character can usually not turn as quickly as a walking
character, so if the character has to round a corner in a tight corridor
it should naturally have to slow down. Our system does not consider
this however and would round the corner at full speed. It would look
decent, but slightly unrealistic. Future work could be done to take this
limitations into account.

34 CHAPTER 4. EVALUATION

Performance

As performance is a very important part of any game. The algorithms
used in one need to have a focus on high performance. This system
has a high initial cost of calculating a path. However once that is
done, the character can follow the path with almost no overhead for
several seconds. Therefore it makes more sense to look at the amortized
performance, or the average CPU time per frame. This system requires
just below 0.2 ms per frame on average which brings it well within
the range for a high performance game, though it can likely not be
used with more than a very small number of characters at a time.
However it is not unreasonable to handle different characters in the
game differently, with characters further away using lower quality
locomotion.

Inverse Kinematics performance

Inverse kinematics is still the part of the system that takes the most
time. Even though the number of variables were reduced to 1, we still
use a search to find the best rotation for the legs. However there exists
some measures of the error which can be solved analytically [20]. This
means the solution probably would not be optimal in the sense that we
use in this paper, but it would be pretty close. Most importantly, right
now the solver converges in about 15-20 iterations, however with an
analytical solution we would only have to run a single iteration. This
would reduce the required CPU time for the inverse kinematics stage
by an order of magnitude.

We conclude this thesis with a brief summary in the next section.

Chapter 5

Conclusions

We have presented a locomotion system that can be used in various
interactive media to produce natural motion for bipedal characters. The
amortized performance of the system (just below 0.2 ms per frame) is
high enough to be used in for example games, even though it is not fast
enough for any large group of characters. We have identified several
improvements that build on top of the work by [2], but there are still
many opportunities for further improvements. Compared to systems
based on real time controllers [19, 12] this system can guarantee that
the character will reach the goal, however it cannot react to dynamic
environments as easily. If we on the other hand compare it other motion
graph based approaches [10, 15, 6] this system is relatively performant
but does not produce as high quality motion as those approaches.

35

Chapter 6

Bibliography

[1] E. Catmull and R. Rom. A class of local interpolating splines.
In R. E. Barnhill and R. F. Riesenfeld, editors, Computer Aided
Geometric Design, pages 317 – 326. Academic Press, 1974.

[2] M. G. Choi, J. Lee, and S. Y. Shin. Planning biped locomotion
using motion capture data and probabilistic roadmaps. ACM
Trans. Graph., 22(2):182–203, Apr. 2003.

[3] D. Demyen and M. Buro. Efficient triangulation-based pathfinding.
In Proceedings of the 21st National Conference on Artificial Intelligence
- Volume 1, AAAI’06, pages 942–947. AAAI Press, 2006.

[4] M. L. Gleicher. Graph-based motion synthesis: An annotated
bibliography. In ACM SIGGRAPH 2008 Classes, SIGGRAPH ’08,
pages 49:1–49:11, New York, NY, USA, 2008. ACM.

[5] F. S. Grassia. Practical parameterization of rotations using the
exponential map. J. Graph. Tools, 3(3):29–48, Mar. 1998.

[6] R. Heck and M. Gleicher. Parametric motion graphs. In Proceedings
of the 2007 Symposium on Interactive 3D Graphics and Games, I3D ’07,
pages 129–136, New York, NY, USA, 2007. ACM.

[7] I. Horswill. Lightweight procedural animation with believable
physical interactions. In In Proceedings of the Artificial Intelligence
and Interactive Digital Entertainment, 2008.

[8] R. S. Johansen. Automated semi-procedural animation for charac-
ter locomotion. Master’s thesis, Aarhus University, 2009.

36

CHAPTER 6. BIBLIOGRAPHY 37

[9] S. Jörg, A. Normoyle, and A. Safonova. How responsiveness
affects players’ perception in digital games. In Proceedings of the
ACM Symposium on Applied Perception, SAP ’12, pages 33–38, New
York, NY, USA, 2012. ACM.

[10] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. ACM Trans.
Graph., 21(3):473–482, July 2002.

[11] J. Lee and S. Y. Shin. A hierarchical approach to interactive mo-
tion editing for human-like figures. In Proceedings of the 26th An-
nual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’99, pages 39–48, New York, NY, USA, 1999. ACM
Press/Addison-Wesley Publishing Co.

[12] W.-Y. Lo and M. Zwicker. Real-time planning for parame-
terized human motion. In Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA ’08,
pages 29–38, Aire-la-Ville, Switzerland, Switzerland, 2008. Euro-
graphics Association.

[13] A. Menache. Understanding Motion Capture for Computer Animation
and Video Games. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1999.

[14] R. Parent. Computer Animation: Algorithms and Techniques. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

[15] A. Safonova and J. K. Hodgins. Construction and optimal search
of interpolated motion graphs. ACM Trans. Graph., 26(3), July 2007.

[16] K. Shoemake. Animating rotation with quaternion curves. SIG-
GRAPH Comput. Graph., 19(3):245–254, July 1985.

[17] R. Tanawongsuwan and A. Bobick. A study of human gaits across
different speeds, 2003.

[18] D. Tolani, A. Goswami, and N. I. Badler. Real-time inverse kinemat-
ics techniques for anthropomorphic limbs. Graph. Models, 62(5):353–
388, Sept. 2000.

[19] A. Treuille, Y. Lee, and Z. Popović. Near-optimal character ani-
mation with continuous control. In ACM SIGGRAPH 2007 Papers,
SIGGRAPH ’07, New York, NY, USA, 2007. ACM.

38 CHAPTER 6. BIBLIOGRAPHY

[20] S. Yeung. Inverse kinematics (two joints) for foot placement.
http://gamasutra.com/view/news/129168/Inverse_
Kinematics_two_joints_for_foot_placement.php, Jan
2012.

http://gamasutra.com/view/news/129168/Inverse_Kinematics_two_joints_for_foot_placement.php
http://gamasutra.com/view/news/129168/Inverse_Kinematics_two_joints_for_foot_placement.php

Appendix A

A.1 Catmull-Rom spline

p0

p1
p2

p3

Figure A.1: Catmull-Rom spline. Note that the spline only passes
between p1 and p2.

The Catmull-Rom spline [1] is defined for t ∈ [0, 1] as

pc,r(p0,p1,p2,p3, t) =
[
p0 p1 p2 p3

]
0 −τ 2τ −τ
1 0 τ − 3 2− τ
0 τ 3− 2τ τ − 2

0 0 −τ τ

1

t

t2

t3

where τ = 1

2
for the centripetal Catmull-Rom spline.

A.2 Quaternions

Quaternions are an extension of complex numbers. In the same way as
an imaginary number can represent a rotation in 2D space, quaternions
can represent rotations in 3D space [5].

39

40 APPENDIX A.

A.2.1 Logarithm

Quaternions can be decomposed into a unit vector part v̂ and a scalar
part θ which are to be interpreted as a rotation around the axis v̂ by θ
radians. We can define the logarithm of a quaternion as

ln(q) = ln((θ, v̂)) = θv̂.

As any vector be uniquely be decomposed into its length multiplied by
a unit vector we can analogously define the exponential of an arbitrary
vector θv̂ as

exp(θv̂) = q.

One advantage of transforming quaternions to vectors is that weigh-
ted sums of vectors make sense mathematically. In contrast weighted
sums of quaternions in general do not make sense unless they lie very
close to each other. Two quaternions can be interpolated between using
spherical linear interpolation however it does not generalize to more than
two quaternions.

	Introduction
	Background
	Overview

	Related work
	Implementation
	Outline
	Navigation graph
	Smoothing
	Parametric blending
	Refinement
	Body trajectory
	Blend groups
	Turning
	Speed

	Inverse Kinematics
	Body offset
	Bone rotations
	Foot position

	Putting it all together

	Evaluation
	Scenarios
	Results
	Discussion

	Conclusions
	Bibliography
	
	Catmull-Rom spline
	Quaternions
	Logarithm

